
J .  Fluid Mech. (1982), vol. 124, p p .  495-528 

Printed in Great Britain 

495 
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Analytical formulae or the effect of interaction between pairs of rigid spherical 
particles on the mean velocity of each species in a statistically homogeneous dilute 
polydisperse system were given in Part 1 (Batchelor 1982), and are here evaluated 
numerically. We have calculated the pair-distribution function and the associated 
value of the sedimentation coefficient for a wide variety of conditions of the two 
interacting species, including different values of the ratio of the radii of the spheres 
( A ) ,  different values of the ratio of their (reduced) densities (y ) ,  small and large values 
of the PBclet number of the interaction, and different forms of the potential of the 
mutual force exerted directly between the two spheres. Values of A and y such that 
some of the trajectories of one sphere centre moving under gravity alone relative to 
another are of finite length lie outside the scope of the calculations a t  large PBclet 
number, and the change of behaviour across the boundary of this excluded set of 
values leads to a complicated dependence of the sedimentation coefficient on A and 
y.  At small PBclet number the behaviour is simpler, and a formula which represents 
the calculated values of the sedimentation coefficient over the whole range of values 
of A and y (on which the dependence is known to be linear) with fair accuracy in the 
absence of interparticle forces is devised. Our calculations of the effect of an 
interparticle force were based on the assumption of a high Coulomb barrier a t  a 
certain sphere separation which could be varied, and a van der Waals attractive 
force at  larger separations. It appears that the direct contribution to the sedimentation 
coefficient made by gravity is always appreciably larger than that made either by 
relative Brownian diffusion of the two interacting spheres or by the interparticle force. 
However, all three of these (effective) forces normally have a significant influence on 
the pair-distribution function and thereby also affect the sedimentation coefficient 
indirectly. Some published observations of the mean particle velocity in monodisperse 
systems are interpreted in the light of the present calculations of the effect of 
interparticle forces. 

1. Introduction 
In  this paper we describe numerical computations of the sedimentation coefficients 

for a dilute homogeneous polydisperse system using the formulae found in Part 1 
(Batchelor 1982). The relevant formulae will be quoted from Part  1 without 
explanation of their origin, in exactly the same notation. It is hoped nevertheless that 
this present paper can be read independently by those who are interested primarily 
in the numerical results and their application. Our purpose is essentially practical, 

t Present address: Anhui Institute of Optics and Fine Mechanics, P.O. Box 25, Hefei, Anhui, 
China. 
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viz. to provide calculated values of the fall speeds of the different types of particle 
which will allow the interpretation and extension of experimental data on hydrosol 
or aerosol dispersions. 

The specific objective of the calculations is to obtain values of the sedimentation 
coefficient S, defined by the expression 

for the mean velocity of rigid spheres of species i correct to the order of the first power 
of the total particle volume fraction q5 (=  Z g l  q5j). Here Uio) is the velocity of an 
isolated sphere of species i moving under gravity and is a measure of one of the 
external forces on the system. The summation is over the m different species of 
particle in the system. 

The sedimentation coefficient is a function of the ratios of the radii and of the 
reduced densities of the spheres of species i a n d j  denoted by 

A = - ,  ai y=- P j -P  
ai P i - P ’  

where p is the density of the fluid, and of the two dimensionless parameters measuring 
the relative magnitudes of the different kinds of force acting on the spheres. One is 
the PBclet number 

which compares the relative motion of the spheres due to  gravity (Vij) being defined 
as UJO)-U6O), = ( yh2-  1) Ui0)) and that due to Brownian diffusion. Here DZ(j0) is the 
relative diffusivity of two spheres of species i and j which are far apart (and isolated 
from other spheres), that  is, 

(1.3) 
kT 1 1 D(0) = - -+- 

The other is @,6j”)/kT, which compares the relative motion due to an interparticle force 
with potential QDij (r ) ,  of which @$?) is a representative value, and that due to 
Brownian diffusion. The sedimentation coefficient depends on the statistical structure 
of the dispersion, which in this case of a dilute dispersion is represented by the 
pair-distribution function pi i ( r ) ,  where r is the vector separation of the two sphere 
centres, but pi j  is fully determined by the above four dimensionless parameters. 

The pair-distribution function p t j ( r )  satisfies a differential equation of Fokker- 
Planck type (equation (4.2) of Par t  l ) ,  and when pii is known the sedimentation 
coefficient S, can be calculated from the expressions (6.2), (6.3) and (6.4) in Part  1 
giving the direct contributions to Sij due to gravity (with hydrodynamic interaction), 
interparticle forces, and relative diffusion respectively. We have calculated pij(r) and 
S,  for both very large and very small values of the Peclet number and for several 
different values of h and y in the absence of an interparticle force. The effect on the 
sedimentation coefficient of an interparticle force which incorporates both van der 
Waals attraction and electrostatic repulsion in a simplified way is also calculated for 
the case of equal-sized spheres at small PBclet number. In  Part 1 there was given some 
analytical results for the asymptotic behaviour of Sij as h --f 0, h -+ m or 1 y I -+ co 
which are independent of PBclet number, and these will be compared with the 
numerical results. 

The starting-point for our calculations of pii and Sij is the set of numerical values 

aJ 6n?(a, a ) .  
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for the two-sphere mobility functions A,,, A,,, A,,, B,,, B,,, B,, (all functions of A 
and s, = 2r/(a1+a,)) provided by the recent work of D. J. Jeffrey, who has kindly 
put his results at our disposal in advance of their publication (Jeffrey 1983). For 
general values of A and s Jeffrey gives the coefficients in a double series of positive 
powers of h and negative powers of s for each of these functions which may be summed 
by a computer. For small values of s - 2 ( = 5) the series become too slowly convergent 
to be useful, and Jeffrey gives supplementary formulae, obtained from near-field 
asymptotic analysis, of the type 

Aup = G p ,  1 + 5 G p ,  2 + c2 1% 5 c;p, 3 + t2c;p, 4 7 (1.4) 

c:p, 1 + CZF, , (log [-1)-1+ c; , ,(log 5- 1 - 
B'f9 = 1+c:~,4(log5-')-'+c:p,5~log~-')-~ ' 

in which a, p = 1 , 2 and the coefficients C&, . . . C& l , .  . . are known functions of A. 
For some purposes we found that the simplified asymptotic forms 

c:p, 2 - CZp C" 
log 5-1 (1.6) ,1 a h 4  A,, = c;p, 1 + f G # 9 , 2 ,  Bup = c:j, 1 + 

were sufficiently accurate. 

2. Large values of the Pkclet number (and # i j  = 0) 

force is ignored, the pair-distribution function is a function of r alone given by 
When the effect of Brownian motion is neglected, and the effect of an interparticle 

on any trajectory of one sphere centre relative to another which comes from and goes 
to 'infinity'. Here L and Mare dimensionless functions of 5 defined by the expression 

for the relative velocity of the two sphere centres due to gravity. L and M are given 
in terms of A,  y and the mobility functions All, A,,, A,,, B,,, B,,, B,, by the relations 
(2.17) and (2.18) in Part 1. 

The only force acting on a particle in this case is gravity, and the sedimentation 
coefficient is given by 

- y(A2 + 3h + 1 ). (2.3) 

Our calculations of Sij are restricted to cases in which all the trajectories are open 
and extend to infinity and for which p i j  is consequently a function of r alone given 
by (2.1) over the whole field. We begin therefore by discussing the region of the 
( A ,  y)-plane to which our results apply. 
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2.1. Values of h and y for which all trajectories are open 

The radial component of velocity of the centre of thej-sphere relative to  that of the 
i-sphere is given by 

r . yj = r . V$) L(s)  

4,) 
2( 1 - h3y) 

l + h  
= r . u ~ O )  h z y ~ , ,  + { 

This radial component is zero at all points on a sphere of radius R such that 

and i t  follows that trajectories in the region 

ui+ai ,< r < R 

cannot cross the sphere r = R and so cannot extend to  infinity. The question is: is 
this relation (2.5) satisfied for some value of R larger than ai + uj 1 

The answer to this question is provided by the work of Wacholder & Sather (1974). 
Using the numerical solution for the flow due to two spheres moving under the action 
of given forces obtained previously by Lin, Lee & Sather (1970), they calculated the 
relative trajectories of the two spheres for different values of h and y .  They found 
that for each value of h there is a range of values of y for which the relation (2.5) 
is satisfied a t  some value of R and for which trajectories of finite length exist. The 
combinations of values of h and y for which some trajectories are of finite length and 
which are excluded from our calculations of the sedimentation coefficient are shown 
in figure 1 for 0 < h < 1 ;  and for values of h outside this range the excluded 
combinations may be deduced from the fact that  the trajectories are unchanged when 
h and y are both replaced by their reciprocals. 

It is useful, for the interpretation of our calculations of the pair-distribution 
function, to note the character of the family of trajectories a t  points in the various 
regions of figure 1 .  At points below the shaded region in figure 1 the j-sphere is lighter 
and smaller and everywhere moves upward relative to the i-sphere on trajectories 
which extend to infinity and which have forms like those shown in figure 2 ( a )  for the 
case h = 4. At the lower boundary of the shaded region (at  which y = yc, say, yc being 
a function of A) ,  equation (2 .5 )  is satisfied by R = ai+aj (to a higher order than 
R -  (ai +aj) ) .  Then, as y increases above ye ,  R increases and trajectories of finite length 
appear (see figure 2 ( b ) ) .  These finite trajectories have common end points, which are 
reached asymptotically and a t  which the two spheres are touching and have a vertical 
line of centres. At larger values of y ,  not near to the lower bound of the range 
yc < y < h P 2 ,  the finite trajectories change shape, and become closed curves which 
are traversed in a finite time (figure 2 (c)). Then as y h-', R -+ 00 and the relative 
velocity of two widely separated spheres tends to zero. Finally, when y > the 
j-sphere has the larger fall speed in isolation and everywhere moves downward 
relative to the i-sphere on trajectories extending to infinity as sketched in figure 2 (d ) .  

Our calculations of the pair-distribution function and of the Sedimentation 
coefficient are confined to values of h and y such that 
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FIGURE 1. Values of h and y for which some members of the family of trajectories of one sphere 
centre relative to the other one are of finite length lie in the shaded region. The line yh2 = 1 
corresponds to two spheres having the same terminal velocity in isolation. In the case y = 1 (two 
spheres of the same density), all the trajectories extend to infinity. (From Wacholder & Sather 1974.) 

FIGURE 2. The family of trajectories of the centre of t he j  sphere relative to the centre of the i sphere, 
for h = 4; (a )  y < ye, ( b )  y a little greater than ye, ( c )  y significantly larger than yc but less than 
A-2, and (d )  y > where A = aj/a,, y = (p j - -p) / (pt -p) .  (From Wacholder & Sather 1974.) 
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FIQURE 3. The pair-distribution function pt, at large PBclet number for h = 4 and various values 
of y .  The abscissa is s = 2r / (a i  + a,). Note that p i j  is unchanged when A and y are replaced by h-' 
and y-'. 

or, equivalently, if we define yc appropriately over the whole range of values of A, 

A 2 1 ,  - c ~ < y < A - ~  or y > y c .  

Since yc > 1 when 0 < h < 1 the important practical case of spheres of equal density 
is included in our calculations. 

2.2. The pair-distribution function 
In  the 'far field', which we have chosen as s > 5, pgi is given with sufficient 

numerical accuracy by the asymptotic form (4.15) in Part 1. For smaller values of 
s the integral in (2.1) was evaluated numerically over the range s to 5. The integrand 
was calculated from the series formulae for the mobility functions provided by Jeffrey 
for 2.017 < s < 5 and from the near-field asymptotic forms (1.4) and (1.5) for 
2 < s < 2.017 (the dividing point s = 2.017 being located where the two sources give 
approximately coincident results for the mobility functions). 

For values of s very close to 2 the simplified asymptotic forms (1.6) are applicable, 
and the corresponding near-field asymptotic forms of the functions L and M are 

L - LIE, M - Mo+M,(logt-l)-l, (2.7) 
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FIGURE 4. The pair-distribution function at large Peclet number for 
h = and various values of y .  

where 5 = s - 2 and Lo, M,,  M I  are related to the coefficients CLaj 1 ,  C& etc in (1.6). 
The numerical convergence of the integral (2.1) as s J 2  was improved by first 
subtracting from the integrand the integrable function 

the integrand is still singular a t  s = 2 but only weakly so. The asymptotic form of 
p i j ,  as s 12, is 

where the constant qo is not determinable from asymptotic analysis. We found that 
our calculated values of p i j  behaved like (2.9) in the range 2 < s < 2.003, and we 
therefore determined qo by making the expression (2.9) equal to the calculated value 
of p i j  at s = 2.001. This gives a near-field asymptotic expression for pi j  which is useful 
for evaluation of the integral in (2.3). 

Values of p i j  over the whole range 2 < s < 00 were calculated for all combinations 
of theva luesh={,$ ,  1 and?=-2 ,  -1, - + , O , % ,  l ,# ,  l y l + c ~ ,  andalsoforafew 
other isolated combinations. Figure 3 shows p t j  as a function of s for h = t and various 
values of y ,  and figure 4 likewise for h = 8. The pair-distribution function is 
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FIGURE 5. The pair-distribution function a t  large PBclet number for y = 1 and various values of 
A. The limit to which this family of curves is tending as A + 1 is different from the pair-distribution 
function calculated for A = 1 and y arbitrary (but =k l ) ,  this latter function being shown as a broken 
curve. In ( b )  the scales are enlarged to show the behaviour near s = 2. 
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unchanged when h and y are replaced by h-l and y - l ,  and figures 3 and 4 can also 
be interpreted as giving pi* for h = 4 and h = 2 and the same (but rearranged) set 
of values of y .  

The untypical negative values of p i j -  1 for h = 4, y = # are associated with the 
proximity of the point representing this combination of values to  the lower boundary 
of the shaded region in figure 1. As this boundary is approached from below, the 
function L(s) (which measures the radial component of the relative velocity of the 
two spheres) and its derivative dL/ds become small for values of s near s = 2 and 
in consequence the sign of the integrand of (2.1) (measuring V . Vij/r. Vgj) changes from 
positive to  negative and its magnitude becomes large, leading to a change of sign of 
the integral. In  terms of the asymptotic form (2.9), x decreases as the lower boundary 
of the shaded region in figure 1 is approached from below and passes through zero, 
becoming negative before the boundary is reached. 

It was shown in Part 1 that, when h is put equal to one, L and M ,  and hence also 
pij ,  are independent of y.  Figure 5 shows the calculated values of pij  for this case. 
It was also pointed out in Part 1 that  the value of p ,  at h = 1 ,  y = 1 is not unique 
and depends on the way in which that point in the (h,y)-plane is approached. Figure 
5 shows pi* as a function of s as found from numerical integration for the cases y = 1 ,  
h = Q, +, + and 0.9. These four curves apply equally to the cases y = 1, h = 8, 4, 2 
and 1.i respectively, and it is evident from the trend of the curves that the curve 
corresponding to y = 1 ,  h -P 1 must be close to that for y = 1, h = 0 9  - and hence 
quite different from that for h = 1 with y arbitrary. It should be remembered that 
when h = 1 ,  y = 1 the relative velocity of the two spheres is zero and so the PBclet 
number is then zero regardless of the value of the Brownian diffusivity; the above 
solutions of the approximate high-Phclet-number form of the equation for pij  will thus 
be inapplicable in a neighbourhood of the point A = 1 ,  y = 1 whose dimensions will 
depend on the values of +(ai+aj) and D$). 

2.3. The values of Xi* 
For the evaluation of the integral in the expression (2.3) for Sij we divided the range 
of integration into three parts. I n  the far field 5 Q s < CO, pi* and the mobility 
functions A,,, A,,, B,,, B,, can be replaced with sufficient accuracy by the series in 
powers of s-l given in Part 1 and the integration can be made analytically. I n  the 
middle field defined by 2 + 6, 5 s < 5, where 6, is a small number to be specified later, 
the integral was evaluated numerically using the values of pi* calculated as above 
and the values of the mobility functions as given by Jeffrey's series formula when 
s 2 2.017 and as given by his near-field asymptotic forms (1.4) and (1.5) at smaller 
values of s. In  the near field 2 < s < 2 +El ,  we substituted the asymptotic form (2.9) 
for pi$ and the simplified asymptotic forms (1 .6)  for the mobility functions, whence 
the integrand becomes a sum of a number of terms of the form 

c$-p(log[-l)-U (p < 1) .  

Then since we have 

provided v < 1 ,  where 7 = (1 -p )  log[T1 and r denotes the complete gamma 
function, and since 
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S.. - 2  -1  - 0 5  0 0 8  1 1.5 2.25 lim 3 

ly l -a Y 
0.25 -1.96 -2.00 -2.20 -2.56 -3.31 -3.83 -4.73 -690  1.97 
0 5  -251 -2.27 - 2 2 8  -2.53 -341 -4.29 -6.77 1.03 - 

1 

2 318  - 0 3 4  -1.89 -2.44 -985 -981 -11.16 -1371 -379  
4 26'63 1005 2.03 -2.66 -19.55 -24.32 -32.71 - 16.78 

Sij = - 2 . 5 2 - 0 1 3 ~  (7 + 1)  

- 

TABLE 1. Calculated values of the sedimentation coefficient S ,  for Yi, 9 1 ,  ai, = 0, and different 
values of A( = aj/ai) and y (  = (p, -p) / (pi -p))  

A Si, s i ,+2 .5+y A S ,  8 ,  + AZ + 3A + 1 

0 9  -5.29 - 1.79 l.i  -5.95 - 0 3 8  
0 5  - 4 2 9  - 0 7 9  2 - 981 1-19 
0 2 5  - 3 8 3  - 0 3 3  4 -2432 4 6 8  
0125 -3.68 - 0 1 8  8 -7853 10.47 

TABLE 2. Calculated values of 8 ,  for y = 1, Yij 9 1, mi, = 0, and different values of A( = u,/ui), 
compared with the theoretical asymptotic forms for A -+ 0 and A + 00 

for any value of v (except v = l ) ,  the value of the contribution to the integral (2.1) 
from the near-field range can be found accurately. 

was to take several small values and 
calculate the corresponding contributions to the integral (2.1) from the middle and 
near fields in the above way for each of these trial values of gl, and then to choose 
a value such that the sum of these two contributions is stationary in the neighbourhood 
of the chosen value. We found that usually there was very little variation in the sum 
of these two contributions as t1 was varied over the range 00014*004, and so our 
normal choice was = 0.003. 

The calculated values of Sij for all those combinations of h and y for which the 
pair-distribution function had been calculated are given in tables 1 and 2. The values 
of Sij given in these tables should be correct to the first decimal place. 

As I y 1 +a, p t j  tends to a finite limit and so S,  is a linear function of y a t  large 
values of 1 y 1 ; the calculated value of the coefficient of y in this linear relation is shown 
in the last line of table 1 .  When h = 1, pti is independent of y and so Stj is a linear 
function of y in this case also, viz. 

Our procedure for the determination of 

(Sij),j=, = -2.52-0.13~ (y + 1) .  (2.10) 

Feuillebois (1980) has also made a numerical calculation of S,, a t  large PBclet number 
for the case h = 1, and finds S,  = - 2.7 + 0.1 y .  The small numerical differences are 
possibly a consequence of Feuillebois using different (and less accurate) data for the 
mobility functions in the near field. 

The variation of S,, with y for various given values of h is shown graphically in 
figure 6, and with h for given y in figure 7 .  Some of the curves have two sections with 
quite different behaviours, separated by a gap corresponding to values of h and y 
which lie within the excluded shaded area of figure 1 .  The termination of a section 
a t  the lower boundary of the excluded region of figure 1 (or a t  the extension of this 
boundary to values of A outside the range 0 < h < 1)  is labelled a,  and a termination 
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FIGURE 6. The sedimentation coefficient S ,  a t  large PBclet number as a function of y for various 
values of A. The shaded barriers indicate the lower (a )  and upper ( b )  boundaries of the region of 
the (y,A)-plane in which some trajectories are of finite length (see figure 1). 

7 

at  the upper boundary, where h2y = 1,  is labelled b. The large circle around the point 
corresponding to h = 1, y = 1 in each of figures 6 and 7 is a reminder ( a )  that the 
value at this point depends on how it is approached, and ( b )  that in a neighbourhood 
of this point the PBclet number is not large and the value of S,  calculated as above 
is consequently not applicable. The calculated limiting value of Si j /y  as I y I + 00 for 
a given value of h has been used to draw the broken lines in figure 6. Only the slopes 
of these broken lines are known, but the need for each of these lines to be an asymptote 
to the corresponding calculated curve both as y --* co and as y + - 00 determines the 
positions of the lines quite closely. 

It was shown in Part 1 that 
Sij % - 2.5 - 7, (2.11) 

when h 4 1 at any value of the PBclet number. This linear relation in y is shown as 
a dashed straight line in figure 6, and as a set of dashed asymptotes to the curves 
in figure 7 giving S,  as a function of h for given y ;  in both figures (2.11) is clearly 
consistent with the calculated values of Xi$. Table 2 also shows a rapid approach of 
the values of Sij to - 2.5 - y as A + 0 in the particular case y = 1 .  Another asymptotic 
result from Part 1 is that 

Sij+ y(h2 +3h+ 1 )  --* 0 (2.12) 
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FIGURE 7 .  The sedimentation coefficient at large P6elet number as a 
function of A for various values of y .  

as h + 00 at any value of the PBclet number. This is not fully confirmed by the trend 
of the numerical results shown in the last column of table 2, and we believe it would 
be necessary to take the calculations to larger values of h than 8 to reveal the 
approach to the asymptotic form. The relation (2.12) is a consequence of the 
deduction that pii - 1 is of order A-3 when h % 1, and it will be seen from figure 5 that 
the calculated values of p i j -  1 for A = 2, 4 and 8 have not begun to  decrease, as h 
increases, at  the rate predicted analytically. 

The bewildering pattern of variation of Sii shown in figures 6 and 7 needs to be 
assimilated bit by bit. One striking feature of figure 6 is the quite small variation of Sij 
with h a t  y = 0. This reflects the fact that when the j spheres are neutrally buoyant 
the main hydrodynamic effect of the presence of the j spheres is to cause more 
dissipation in the flow field generated by each falling i sphere. When h 4 1 this 
addition dissipation is given by the Einstein formula for the effective viscosity of a 
dispersion of spheres, and Xi, z -2.5; and when h is not small the hydrodynamic 
interaction of the i and j  spheres modifies that value by an amount which is evidently 
small. The occurrence of positive values of Sii is also worthy of note, since experience 
with monodisperse systems might suggest that ‘hindered settling ’ is the norm in the 
absence of interparticle forces. The positive values of Xis for y < 0 and some values 
of h greater than unity are no doubt a consequence of the strong counter flow 
associated with the risingj particles; and in the case h < 1 the positive values of 
Sii when y > (see the last column of table 1)  are a consequence of an i particle 
being carried downward when it is close to a faster-falling j particle. 
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3. Small values of the Pkclet number (and 

r . V(0) 
found in Part  1 to be 

r V$') 

= 0) 
The pair-distribution function in this case is not spherically symmetric and was 

pi i ( r )  = 1 + 3  %j Q(s) (3.1) 

correct to the order of the first power of the PBclet number Pij, where Q(s) satisfies 
the differential equation 

L(sZG:)-2HQ = s2W 
ds 

subject to the boundary coditions 

Q + O  as s + m ,  (3.3) 

Here G(s) and H(s )  determine the relative diffusivity of the two spheres in the 
directions parallel and perpendicular to the line of centres and are known multiples 
of the two-sphere mobility functions (see relations (2.19) and (2.21) of part l ) ,  and 

2 ( L - M )  dL 
W(s )  = +-. 

S ds 

The effect of gravity is here a perturbation of a system in equilibrium, and pt j  is 
consequently a linear function of y, implying that 

( ~ A ~ - l ) & ( s , y , h )  = Q'(~,h)+yQ"(s,h) 13.51 

where Q' and Q" are independent of y and Q' = -&" when h = 1. There is a 
corresponding decomposition of the sedimentation coefficient, viz. 

x.. 1.3 = S!.+yfl!'.. 23 1.3 (3.6) 

It is useful moreover to identify the direct contributions made to  S,li and S& by 
gravity and by relative Brownian diffusion, to be labelled with the superscripts (G) 
and ( B )  respectively; thus 

S;, = SJG) + SJB),  &'li = Sl jG)  + Si jB) .  (3.7) 

The analytical expressions for the coefficients 8,lj") and S;jG) are seen from equation 
(6.10) in Part 1 to be 

l + h  O0 
St(") 23 = (T) j2 (Al,+2B,,-3)s2ds,  

(3.9) 

Likewise from equation (6.12) in Part 1 we have 

S(B) = fl'(B) + yS!'(m 
$3 $3 2 1  

17 F L M  124 
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3.1. Calculation of the pair-distribution function 
We solved the differential equation (3.2) for Q(s) numerically, both for y = 0 and 
y = 1 ,  for each of several different values of A. From these solutions Q’(s) and Q”(s) 
may be found although there was no necessity to do that explicitly. 

As s - 0 0 ,  both G and H approach unity and W is of order in general. 
Consequently Q may be written as 

(3.11) 

when s B 1, where K is unknown and Q, may be found in terms of K by substituting 
(3.11) in the equation (3.2), writing G, H a n d  W similarly as power series in s-l with 
the aid of the asymptotic developments given in Part  1, and equating coefficients of 
s-*. Our procedure for solving (3.2) was to guess a value of K ,  thereby determining 
Q(s) numerically in the ‘far field’ s 2 5, and then to integrate the equation 
numerically from s = 5 to smaller values of s. The numerical values of G, H and W 
required for this integration were calculated from the series formulae for the mobility 
functions provided by Jeffrey (1982) for 2-017 < s d 5 and from Jeffrey’s near-field 
asymptotic forms (1.4) and (1.5) for 2 < s < 2.017. The correctness of the assumed 
value of K was judged by whether the inner boundary condition (3.4) was found to 
be satisfied; if i t  was not, further trials were needed. 

I n  the neighbourhood of [( = 8-2) = 0, the functions G, H and W have the 
behaviours - GI!$, H - H,, W N W,,  

where G,, H ,  and W, are numbers dependent on A (and on y in the case of W,) which 
can be found from the numerical coefficients in the simplified near-field asymptotic 
forms in (1.6). The differential equation (3.2) thus takes the approximate form 

[-+--(-)Q=- d2Q dQ Ho WO 
dc2 d[ 2G1 GI 

near [ = 0. The general solution of (3.12) is 

(3.12) 

(3.13) 

where 7 = 2(H,  [/2G,)a, a and P are constants to be determined, and I,, KO are Bessel 
functions of imaginary argument. The inner boundary condition (3.4) is effectively 

lim( 7:) = 0, 
7-40 

and this requires p = 0 since K,(7) behaves as log7 near 7 = 0. The solution correct 
to the order of [ is thus 

Q = --+ 2wo a(l+h”, 
HO 

which is equivalent to 
2GiQh-HoQo = ZWo, (3.14) 

where Q, and Qb are the values of Q and dQ/d[ at [ = 0. 
Our numerical integration of (3.2) with an assumed value of K gave values of Q 

and dQ/d[ which varied very little in the range 0 < [ < 0.001, and we equated Q, 
and Qb to the values found at [ = 0.0005. If two trial values of K gave values of 



Sedimentation in a polydisperse system. Part 2 

2.0 2.5 3.0 3.5 s 4.0 4.5 
0 

-0.05 

Q 

-0.10 

-0.15 I I 

509 

1 
t 

I 

I 

I 
FIGURE 8. The perturbation of the pair-distribution function at small PBclet number 

(see (3.1)), for y = 1 and various values of A .  

2G1 Qh - H ,  Q, which both differed from 2 W,, the computer sought the value of K for 
which (3.14) was satisfied by successive interpolation. 

As a check on the accuracy of our numerical solution, we calculated the value of 

fzm (2HQ+s2W)ds. (3.15) 

This integral is zero when Q satisfies equation (3.2), and when evaluated from our 
numerical solution for Q the integral was typically of magnitude about 0.01. 

Our calculated values of Q as a function of s for y = 1 and h = 4, +, i, 0 9  are shown 
in figure 8, and those for y = 0 and h = Q, 1, i, 1, 2,  4, 8 are shown (on a different 
scale) in figure 9. The function Q(s)  for any other value of y can be obtained from 
these two sets of curves with the aid of (3.5). Again there is a difference between the 
pair-distribution function for h = 1 with y having any value except unity and the 
function for y = 1 with h tending to unity (reflecting the difference between the values 
of W in these two cases). 

It will be noticed that, whereas the values of Q for given s and y = 1 seem to be 
tending to zero as h becomes large, those for y = 0 are actually increasing as h is 
changed from 1 to 2 to 4 and to 8, although according to the theoretical result in 
Part 1 Q + 0 as h +00 for given s. I n  general, W and hence also Q are of order 
when h + 1,  but y = 0 is a special case owing to the occurrence of the products h2y 
and h3y in the expressions for L and M in (2.17) and (2.18) in Part 1,  and W and 
hence also Q are of order h-l when h + 1 in the case y = 0. The convergence of Q 
to zero as h +00 is thus rather slow when y = 0. The trend of the curves in figure 
9 suggests that a t  larger values of h than 8 the curves would begin to approach the 
axis Q = 0. 

3.2. The values of S& and Slj 
We calculated the integrals in (3.8) and (3.9) using the data available for the mobility 
functions: far-field asymptotic forms (and analytical integration) for 5 < s < 00, the 
series formulae from Jeffrey (1983) for 2.017 < s < 5 ,  and the near-field asymptotic 

17-2 
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FIQURE 9. The perturbation of the pair-distribution function at small P6clet number, for y = 
various values of A. The same set of curves apply t o  IyI +m when A is replaced by A- 
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URE 9. The perturbation of the pair-distribution function at small P6clet number, for y = 
various values of A. The same set of curves apply t o  IyI +m when A is replaced by A- 

0 and 
1 

S;jG’ #JB’ Sij 

0.125 -2.34 0.03 -2.31 
025 -2.24 007 -2.17 
0 5  -2.09 015 -1.94 
0 9  -1.88 025 -1.63 
1.0 -1.83 027 - 1.56 
1.i -1.78 0.28 -1.50 
2 -1.45 035 -1-10 
4 -1.04 041 -063 
8 -069 045 -024 

SJG’ + h2 + 3h + 1 S p  

001 -001 
0.04 - 004 
012 -012 
025 - 024 
028 - 027 
032 - 0.30 
048 -047 
0.64 - 068 
075 --088 

s; + A2 
+3a+1 

0 
0 
0 
0 0  1 
0 0  1 
0.02 
001 

- 0.04 
-013 

(S,,,=, + h2 + 3h + 1 

-2.31 
-2.17 
- 1.94 
- 1.62 
- 1.55 
- 1.48 
- 1.09 
- 067 
- 037 

TABLE 3. Calculated values of the coefficients Slj, S j  (defined by the relation S,  = Sij +y#l j )  for 
Yij 1, Qtj = 0, and different values of A( = uj/ut) .  The superscripts (G) and ( B )  denote the direct 
contributions made by gravity and Brownian diffusion. 

forms (1.4) and (1.5) for 2 < s < 2.017. Likewise the integral in the expression (3.10) 
for S f )  was calculated for y = 0 and for y = 1 using the previously calculated values 
of &(a) for those values of y ,  whence 8JB) and SG(B) follow from 

(3.16) 

In all cases the numerical integration could be carried down to s = 2 as the integrands 
are all finite there. 

Table 3 shows the results of our calculations of SJG), SJB) ,  S;jG) and S;jB) for h = 9, 

8s ’ B )  - - (slp)y=o, Sijc ” B )  - - ( fq f9y= l - (S f jB) )y=0 .  
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FIQURE 10. The sedimentation coefficients Sli and SC (defined by Sij = Sij + yS&) as functions of 
A at small Pkclet number. The coefficient S:, is plotted as S:j+(A*+3A+ 1 )  to reduce the range of 
variation with A.  

f, +, 0 9 ,  1,  1 .1 ,  2, 4, 8. I n  the case of X;jG) we have subtracted - (h2+3h+ 1 )  from 
the calculated values, since this is the known asymptotic form both for A --f 0 (when 
only the term - 1 is relevant) and for h --f co and the subtraction reduces greatly 
the variation of the tabulated numbers over the whole range. The approximate 
equality of magnitude of nearly all the adjoining numbers in the two columns headed 
S;jG) + ( A 2  + 3h + 1)  and S;jB) appears to be a coincidence of no significance, since these 
numbers come from integrals in (3.9) and (3.10) which have integrands of quite 
different analytical form. The sedimentation coefficient S,  depends on y (being equal 
to S& + ySij), and values for the important particular case y = 1 are shown in the last 
column of table 3, likewise after subtraction of the quantity - (A2 + 3A + 1)  to reduce 
the tabulated variation. I n  the particular case h = 1 ,  y = 1,  when Sly) = 0, we 
recovered exactly the result Sij = -6.55 obtained by Batchelor (1972) for a mono- 
disperse system; the integrals in (3.8) and (3.9) have integrands which are finite 
everywhere and the improved data on the mobility functions available to us has not 
led to  any change of the earlier numerical result. 

Figure 10 shows calculated values of S;, and Slj + (A2 + 3h + 1 )  as functions of h (with 
a logarithmic scale for A ) .  It is evident that Xij approaches -2.5 and that AS'; 
approaches - 1 as h -, 0, in accordance with the asymptotic relations established (for 
any PBclet number) in Part 1.  The theoretical predictions that Sij -+ 0 and 
S&+ ( A 2 +  3A+ 1)  --t 0 as h -+a are not in such clear agreement with the calculated 
values, but that  is believed to be because the calculations have not been taken to 
a sufficiently large value of A. The convergence of the sedimentation coefficients in 
table 3 to  their asymptotic values as A -+ 00 is slow and does not begin to be apparent 
until A exceeds 8. We calculated the values of &JG) and S;jG) + (A2 + 3h + 1 )  (these 
being coefficients not requiring a calculation of the pair-distribution function) a t  
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values of h increasing by a factor 2 up to 1024, and found that they tended to - 12A -l  

and 70h-1 respectively, with + (A2 + 3h + 1) having a maximum somewhere near 
h = 16. 

A striking feature of the calculated values shown in table 3 is the smallness of I SJB) I 
relative to I&jG)(, except when h & 1 ,  and the (more marked) smallness of lS:/B)l 
relative to I S&.(G) I. At no value of h is 1 S;@) 1 more than 5 percent of 1 SG(G) I. The 

Sij x + yx;w (3.17) 
approximate relation 

which ignores the direct contribution from Brownian motion (while retaining the 
indircct effect, which is to make the pair-distribution function nearly uniform) would 
be sufficiently accurate for many practical purposes, except for h + 1 and values of 
y near zero when the dominance of the second term in (3 .17)  is eliminated. 

G. K .  Batchelor and C.-S. Wen 

4. The effect of an interparticle force at small Peclet number 
The numerical results reported in the two preceding sections and the analysis 

described in Part  1 together provide a general understanding and description of the 
effects of hydrodynamic interactions and of Brownian diffusion on sedimentation 
velocities in a dilute polydisperse system. There remains the effect of an interparticle 
force derived from the potential Qtj(r). The analysis in Part  1 was less complete in 
its consideration of effects of an interparticle force, and the same is true of our 
numerical calculations. This incompleteness is partly a consequence of the mathem- 
atical difficulty of investigating the motions of two nearly touching particles when 
all three of the relevant forces - gravity, effective diffusive force, interparticle force - 
are significant and many of the associated functions are singular ; and partly it reflects 
the problems arising from the need to  introduce additional independent parameters 
in a problem which already has too many for comfort. 

4.1. The assumed interparticle force potential 

The force exerted between two neighbouring colloidal particles in a stable dispersion 
is usually a resultant of the van der Waals attractive force and an electrostatic 
repulsive force between charges which are held at the surfaces of the two particles 
and screened by the presence of counter-ions in the double layers surrounding each 
particle. The dependence of the potential of the van der Waals force on the distance 
between two spheres is fairly well established, and a commonly used expression for 
the potential in the case of two spheres of the same radius a in a nearly-touching 
position is 

where [ = (r-2a)/a, A is the composite Hamaker constant which depends on the 
atomic composition of both the particles and the fluid medium, and h d  is the 
‘dispersion ’ wavelength usually taken as 0.100 pm. This expression is believed to be 
applicable when ca < hd/n ( = 0.032 ym). And a t  larger separations, where retardation 
effects are stronger, but with the gap between the two spheres still small compared 
with a radius (( + l ) ,  the potential is given approximately by 

These two expressions were put forward first by Schenkel & Kitchener (1960), and 
have been used by many later workers. The electrostatic force potential is less well 
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established, and it also varies widely with the nature of the dispersion. The two main 
controlling parameters are the charge density a t  the surface of a particle, or 
equivalently the electric potential a t  the surface, and the thickness of the double layer 
surrounding each particle. The potential of the Coulomb repulsion between the two 
spheres varies relatively slowly for sphere separations smaller than a double layer 
thickness and falls off exponentially when ( exceeds this thickness. Roughly speaking, 
the surface electric potential determines the magnitude of the potential barrier to 
close approach of the two spheres and the double layer thickness determines the 
location of the barrier. Absolute sphere size (or a/A,, if one wishes to list only 
dimensionless parameters) appears in the expressions (4.1) and (4.2), so a minimum 
of three independent parameters are needed to  represent the resultant interparticle 
force in a stable dispersion. These are additional to the three parameters y ,  A, Yti3 
already introduced to describe interactions between two different particles in a 
polydisperse system. 

We propose in this paper to present only a few exploratory calculations for spheres 
of equal size which show the general nature and magnitude of the effect of 
interparticle forces on sedimentation velocities. With this modest objective in mind 
we have adopted the following simplified form of the Coulomb repulsion potential: 

where EOa can be identified roughly with the double-layer thickness. The Coulomb 
barrier is being assumed here to be high enough to exclude any particle pairs with 
a spacing (surface to  surface) smaller than g0a, and a t  larger spacings the Coulomb 
force is zero. For the potential of the van der Waals force the expression (4.1) will 
be assumed to  hold over the whole range of (small) values of 5, despite the fact that  
for some part of that  range (a  > 0.032 pm and (4.2) is more appropriate. (The 
numerical difference between (4.1) and (4.2) in the range (u > 0.032 pm is not large, 
as may be seen from the fact that (4.1) asymptotes to -0*0074A((2aAd1)-1 when 
6aA;' 9 1 and (4.2) to -0.0065A(62aA;1)-1.) And since the magnitude of the van der 
Waals potentials falls off much more rapidly than (4.1) or (4.2) as soon as the gap 
between the spheres ceases to be small compared with the smaller of the two sphere 
radii, we have assumed that the potential jumps to zero a t  ( = 0.2 ; some modification 
of (4.1) at larger values of 5 is needed in any event because some of the integrals in 
the sedimentation analysis would otherwise be divergent. 

The resultant interparticle force potential, which is sketched in figure 11, is thus 
specified now by two parameters, viz. to and a/&. This is not put forward as a realistic 
form of the potential, but i t  has the merit of allowing an examination of the effect 
of varying the important parameter E0 representing the double layer thickness 
without too many numerical complications. For sphere separations in the range 
0 < 6 < to the Coulomb repulsion is dominant and the pair-distribution function is 
zero, whereas for to < 6 < 0.2 the interparticle force is attractive and there are more 
sphere pairs than in the absence of interparticle forces. Varying 5, from zero to 0.2 
thus changes the balance between the effect on sedimentation velocities of an excess 
number of close pairs resulting from attractive forces and the effect of a deficiency 
of close pairs resulting from Coulomb repulsion over a wide range. The depth of the 
secondary minimum of (D a t  6 = to has a strong effect on the maximum of the pair- 
distribution function and, with our simple model, is determined directly by go. 

Numerical values of the van der Waals potential function (4.1) are shown in figure 
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FIGURE 11. The simplified interparticle force potential (shown as a full curve) used in the 
calculations of sedimentation coefficients for equal sized spheres. Over the range 5, < 5 < 2.2 (where 
5 = ( ~ - 2 a ) / a ) ,  @ coincides with the van der Waals potential (4.1), and there is a high Coulomb 
barrier at 5 = to. 

12 for four values of the radius of the two spheres, viz. a = 0-1,0-5, 1 ,2  pm, and with 
A having the value 5.0 x erg) appropriate to polystyrene latex 
particles in water, and T = 290 OK (so that kT = 4.0 x J and AIkT = 1.25). 
These are the numerical values of @/kT to  be used in calculations of the sedimentation 
coefficient for equal sized spheres at small PBclet number. 

J (i.e. 5.0 x 

4.2. Identical spheres 

This case of two spheres which have the same density as well as the same radius is 
relevant to a polydisperse system since self-interactions of one species affect the 
sedimentation velocity for that species, as well as being of considerable interest in 
its own right. The relative velocity of the two spheres due to gravity is zero here and 
the pair-distribution function has the form appropriate to ‘structural equilibrium ’, 
viz. the Boltzmann distribution 

p(r) = exp { - @ ( r ) / W .  (4.4) 

The Boltzmann distribution corresponding to the van der Waals potential (4.1) is also 
shown in figure 12 for the four sphere sizes. This gives the pair-distribution function 
for values of 6 in the range 5, < f < 0.2, and outside this rahge we have 

p = O  for 0 , < 5 < 6 ,  
1 for 5 2 0.2. 

(4.5) 
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FIGURE 12. The van der Wads potential for two equal sized spheres given 
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i (4.1), with 
A/kT = 1.25, A, = 0100 ,urn and various values of the radius a,  as a function of the non-dimensional 
gap width 6 (= (~-2u) /a ) .  Also shown is the corresponding equilibrium pair-distribution function 
exp ( - @ ' , d * / k T ) .  

The pair-distribution function has a very high maximum for small values of E,, (Eo 
less than about 002 for a = 01 pm and less than about 0.01 for a = 1 pm), reminding 
us that such small values of Eo are incompatible with our basic premise that the 
dispersion under consideration is stable. 

The sedimentation coefficient S for two identical species is given by formula (6.5) 
in Part 1 .  viz. 

= -6.55 + 1; { (All + 2B,, - 3 +A, ,  + 2B,2)A,l exp ( -@/kT) - 1 s2 ds.  (4.66) 

Numerical evaluation of the integral in (4.66) for the interparticle potential described 
above is straight-forward, and the results are shown in table 4 and figure 13 in the 
form of S as a function of to, the location of the Coulomb potential barrier, for each 
of the four different sphere radii. 

It was pointed out in Part  1 that since the combination of mobility functions in 
the integrand in (4.66) is approximately equal to 1.32 over the range 2 < s < 2.2, an 
approximate form of (4.66) is 

S = - 6.55 + 0.44a, (4.7) 

{ I 
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a = 0 1  pm a = 0.5 pm a = l p m  a = 2pm 

ti s a s a 8 a S a 

0908 
0010 
0012 
0.014 
0016 
0018 
0020 
0025 
0030 
0040 
0050 
0070 
0100 
0150 
0200 

- 058 
- 2.65 
- 3.66 
- 493 
- 544 
- 5.97 
- 624 
- 6.58 
- 691  
- 7.34 
-7.71 

- 
13.23 
868 
6.44 
363 
2.49 
1.32 
070  

- 0 0 5  
-080 
- 1.78 
- 265  

- 
- 3.79 
- 5 0 8  
- 5.60 
- 587 
- 6 0 3  
-627 
- 640 
- 656 
- 6.67 
- 6.84 
- 7.06 
- 7.39 
-7.71 

- 
6.09 
3.26 
2.1 1 
1.5 1 
1.15 
063 
0 3 5  

-001 
- 0 2 6  
- 0.65 
- 1.14 
- 1.90 
- 265  

- 

- 4.83 
- 5.74 
- 6.05 
- 6.2 1 
-631 
- 637 
- 648  
- 6 5 5  
- 666  
-6.74 
- 689  
- 7.08 
- 7.40 
-7.71 

- 
3.79 
1.79 
1.10 
0 7 5  
054 
039  
0.15 

-001 
- 0.25 
- 0.43 
- 076  
- 1.20 
- 1.92 
- 2.65 

- 547 
-612 
- 630 
- 6.39 
- 6.45 
- 649  
- 652 
- 659 
- 6.63 
-671 
- 678  
-6.91 
- 7.10 
- 7-40 
- 7-7 1 

2.39 
096  
054  
034  
022 
012  
0 0 5  

- 008  
-019 
-037 
-052 
- 081 
- 1.23 
- 1.93 
- 2-65 

TABLE 4. Values of the sedimentation coefficient for a dispersion of identical spheres of radius 
a as a function of the parameter f o  specifying the location of the high Coulomb potential barrier. 
a is the corresponding excess fraction of close particle pairs divided by the volume fraction 6. 

I I I I I I 1 

-4.0 

-5.0 

S 

-6.0 

-7.0 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

l o  

FIGURE 13. The sedimentation coefficients for a dispersion of identical spheres of radius a as a 
function of the parameter f o  specifying the location of the high Coulomb potential barrier 
surrounding each sphere. The dotted curve labelled A = 0 corresponds to the case of zero van der 
Waals attraction (that is, Coulomb forces only). 
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wherg 
n 

a = 3 J r  (e-@l”-l)s2ds = - (p-l)dr, (4.8) 4 J?.,, 
and a4 can be interpreted as the excess number of spheres (excess to the number for 
p = 1 )  which are partners in close pairs for which s < 2.2, expressed as a fraction of 
all the spheres. We have tested the accuracy of (4.7) by calculating a from (4.8), with 
results which are included in table 4. The agreement between the two expressions 
(4.6) and (4.7) is found to be good, the difference being less than 1 yo over all parts 
of the table. Values of a exceeding 15 are unlikely to be compatible with stability 
of the dispersion, and our calculations have therefore been confined to values of 6, 
for which a < 15. Aside from its use as a parameter which determines the sedimen- 
tation coefficient, the value of a conveys information about the structure of the 
dispersion. The relation (4.7) may therefore have value for experimental purposes. 

Figure 13 shows that the value of S depends quite strongly on 6, a t  small values 
of 6,. Small values of 6, imply a small double-layer thickness and a correspondingly 
large range of action of attractive forces and a positive excess number of close pairs 
(a > O ) ,  and since close pairs fall more quickly than well separated pairs the value 
of X is greater than - 6.55. Large values of 6, on the other hand imply the exclusion 
of pairs over a wider range of gap thicknesses and a deficiency of close pairs (a < 0), 
and the associated values of S are less than -6.55. The value of 6, a t  which a = 0 
(interparticle force effects being present still, but cancelling) depends on the sphere 
radius, and varies from 0022 for a = 2 ,um to 0.065 for a = 0.1 pm. 

Incidentally, we may gain some idea of the effect of a variation in the composite 
Hamaker constant A by comparing the above results (for A = 5.0 x J) with 
those obtained for A = 0. I n  this latter case 

exp(-@/kT) = 0 when 0 < ( <  6, 
1 when 62 Q, 

and if we approximate to the bracketed sum of mobility functions in (4.6b) in the 
same manner as in (4.7) we find 

S M -6*55-5*3(6,++6~), (4.9) 

which is shown in figure 13. 
Some previous authors have investigated the effect of interparticle forces on the 

sedimentation coefficient for a monodisperse system, although there are few 
quantitative results. The first were Goldstein & Zimm (1971) who adopted a force 
potential which represents the van der Waals attraction and Coulomb repulsion more 
realistically than our model. The range of their calculations was limited to suit their 
purpose, viz. to obtain an expression for S in terms of the Hamaker constant A which 
would allow the value of A to be inferred from a previous observation of the mean 
particle velocity; and their expression for S differs from ours slightly in consequence 
of an error of principle in their calculation of the mean velocity of a particle in an  
ambient flow field due to the presence of a second particle. I n  later work which also 
is in error in this part of the calculation, Reed & Anderson (1976) adopted a realistic 
form of the Coulomb repulsion potential but ignored the van der Waals potential, 
and found values of S less than that for 0 = 0 which they recognized as being a 
consequence of the greater fall speed of the excluded close pairs. Most recently, 
Dickinson (1980) adopted the same high discontinuous Coulomb barrier as in our 
model but ignored the van der Waals force, and then used far-field asymptotic forms 
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for the mobility functions to evaluate the integral in the expression for S, thereby 
obtaining an approximate version of (4.9). Dickinson makes the valid comment that 
the values of the mobility functions for small values of r-2a, which are difficult to 
calculate (although they are now available), become less relevant as the distance of 
the high potential barrier from the surface of a particle is increased. A similar 
comment may be made about polydisperse systems, because many of the integrals 
weighted with the factor exp ( - Qij /kT)  there involve also a pair-distribution function 
whose form near s = 2 is not easily found, as well as mobility functions whose values 
are now known. 

A number of observations of the settling speed of uniform colloidal spheres in a 
dilute liquid suspension have been made, usually under conditions such that the 
double layer thickness is a small fraction of the sphere radius (corresponding to a fairly 
high electrolytic strength of the liquid). The observed values of the sedimentation 
coefficient S have generally been in the range - 5 to - 6. Cheng & Schachman (1955) 
used polystyrene latex spheres of radius 0-13pm dispersed in x sodium chloride 
solution (0098 mol dm-3), and found S = -5.1. More recently, Buscall et al. (1982) 
also used polystyrene latex spheres, of radius 1.55 pm, dispersed in a sodium chloride 
solution ( mol dmP3), and their measurements gave S = - 5-4 T 0.1. Goldstein & 
Zimm (1971) estimated that in the conditions of Cheng & Schachman’s experiments 
the double layer thickness, or Debye-Huckel screening length ( K - ~ ) ,  was 
1.0 x lop3 pm, = 0.0077~; and with the 100 times weaker electrolyte used in the 
experiments of Buscall et al. the double layer thickness would be 10 times larger and 
so equal to  00065a for these latter experiments. 

We may try to relate these measurements of S to the calculated values shown in 
figure 13 by choosing the value of the distance &,a a t  which the van der Waals 
attraction is cut off in our simplified interparticle potential so as to make the 
calculated value of S agree with the measured value. According to figure 13, S = - 5.1 
for spheres of radius 0.13 pm when to = 0.020, that  is, about 2.6 times the D.-H. length 
in Cheng & Schachman’s experiments, and X = - 5.4 for spheres of radius 1.55 pm 
when [,, = 0.009, that  is, about 1.4 times the D.-H. length in the experiments of 
Buscall et al. These are plausible values of to, and the fact that the values of t o ~ a  
are above unity is understandable, because the Coulomb potential remains 
appreciable until the sphere gap exceeds about two double-layer thicknesses. The 
height of the Coulomb barrier under the experimental conditions is of course also 
relevant to  a choice of to, but information on this is not available. It seems reasonable 
to conclude that the positive differences between these measured values of S and 
-6.55 could be a consequence of van der Waals attractive forces causing an exces~ 
number of close pairs whose common speed of fall exceeds the fall speed of an isolated 
sphere. 

Another set of measurements was made recently by Kops-Werkhoven & Fijnaut 
(1981) who used sterically stabilized silica spheres of radius 0.021 pm dispersed in 
cyclohexane, and found S = -6 f  1 .  This value of X corresponds to a value of to of 
about 0 1  if the interparticle potential has the form assumed here. It does not seem 
possible to infer the position of the effective potential barrier surrounding these silica 
particles from the data given by Kops-Werkhoven & Fijnaut, although a value near 
0 1  is plausible. 

4.3. Spheres of different density at small Pkclet number 

We consider now the sedimentation coefficient for a system of spherical particles of 
the same size but different densities, with the PBclet number of the pair interactions 
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assumed to be small, as is usually the case when effects of interparticle forces are 
significant. The assumption of equal sphere sizes is one of expediency, to keep within 
bounds the complexity of what are intended to be exploratory calculations. 

We shall adopt the same form of interparticle force potential as for the case of 
identical spheres. The composite Hamaker constant A in reality depends on the 
densities and molecular compositions of the two spheres and the fluid medium, but 
for definiteness we shall again adopt the value of A appropriate to polystyrene 
particles in water, viz. 5.0 x J. The resultant potential Qtj indicated in figure 
1 1 ,  with numerical values of the van der Waals potential given by (4.1) and shown 
in figure 12, is thus again applicable and go and a/& are the only variable parameters. 

The pair-distribution function a t  small Peclet number was shown in Part 1 to be 

pi#) = exp{ - iDi j (v ) /kT)  { 1 +%j-3-Q(s)] r V,(;) 
of the form r . Vo) 

correct to the order of Yij, where Q satisfies the equation 

and the boundary conditions 
Q + O  as s + m ,  (4.11) 

GdQ/ds  = 0 a t  s = 2. (4.12) 

(It will be noticed incidentally, although we have not made any use of the 
observation, that equation (4.10) is recovered from (3.2) - the equation for Q(s) when 
Oij = 0 - if all the mobility functions making up G, H and W in the latter equation 
are replaced by their product with exp( - m i j / k T ) . )  

With our assumed form for Oij(r) ,  the terms involving mij in (4.10) are non-zero 
only in the range 2 +to < s < 2-2, and there are discontinuities in @, a t  s = 2 +to 
and s = 2.2. If we think of each of these two jumps as being made over a small range 
of values of s of order 6, then within this range dQij/ds has large magnitude and (4.10) 

(4.13) 
reduces approximately to 

dQ/ds  = L/G,  

and since L/G is finite (and equal to unity for all values of s when h = 1 )  the change 
in Q across the transition is of order 6 and so is negligible for our model potential. 
The jumps can therefore be ignored, and the effect on Q(s) of the terms involving Qij  

in the open interval 2 +to < s < 2-2 alone need be considered. 
It seems unlikely that this effect is a large one. When h = 1 we have 

L - 2 t ,  W + 1.599 

as 6 --P 0, and so, with the van der Waals form (4.1) for 

s2L d ( m i j / k T )  0-12 
N-- 

s2W ds C ’  
(4.14) 

showing that the ratio of the new and old terms on the right-hand side of (4.10) is 
of order unity except when 6 is as small as 0.01 (and smaller values are irrelevant 
because they imply too small a value of to for the assumed stability of the dispersion). 
And when 6 docs have a value near 0.01, and the two terms involving Qij in (4.10) 
are dominant, the equation reduces to (4.13), giving d Q / d s  = 1 ,  which is not very 
different from the value of dQ/ds  a t  6 = 0 in the absence of the interparticle force 
(viz. about 0.8). The modification to Q(s) resulting from the presence of the terms 
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involving (Dii in (4.10) in a numerical integration beginning a t  a large value of s and 
proceeding towards s = 2 is thus equivalent to an order-one change in the derivatives 
of Q in the last stages of the integration (2 < s < 2.2) where Q is already close to its 
terminal value. (See the curve for h = 1 in figure 9, showing the calculated values 
of Q in the absence of the interparticle force.) Since the inner boundary condition 
(4.12) is independent of it seems that the change in Q due to the presence of the 
interparticle force will be a minor one, except possibly a t  the smallest (and least 
realistic) values of to. Bearing in mind that, as will soon be seen, the sedimentation 
coefficient depends only weakly on Q(s) (because the dominant contribution to Sii, 
viz. that due directly to gravity, is independent of Q), we concluded that Q could 
be regarded, with sufficient accuracy for the present purposes, as independent of ( D i j .  
The values of Q(s)  shown in figure 9 for A = 1 (which is applicable for any value of 
y except y = 1 )  were therefore used in the present calculation of the effect of the 
interparticle force on S,. 

The sedimentation coefficient Sij is here the sum of three direct contributions, made 
by gravity, interparticle force, and Brownian diffusion : 

si* = sp + + s ( B )  aj (4.15) 

where Sf), S#) and S,C,.) are given by (6.10), (6.11) and (6.12) in Part 1 .  Moreover, 
in this case of a small departure from equilibrium due to gravity we may again write 
&(s )  as in (3 .5)  and Sii as in (3.6). Each of the three terms in (4.15) is similarly a linear 
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(4.16) 

and the explicit expressions for XijG), etc are seen from (6.10), (6.11) and (6.12) in 
Part 1 to be, for the case h = 1, as follows: 

(4.17) 

&!‘IG) $3 = Jr{ (4.18) 

d exp ( - (Dij/kT) 
d s  

Q’(s) s2 ds, (4.19) 

x exp ( -Ot,./kT) Q’(s) s2ds .  (4.20) 

The expressions for S;/I) and S&CB) are the same as those for 
replaced by Q”, and since Q’ = - Q” when h = 1 we have in the present case 

and S;jB) with Q’ 

&‘!(I) a3 = -#!’.(I) a3 and Sij ’ B )  = -#&(B), (4.21) 

Numerical evaluation of the integrals (4.17), (4.18) and (4.20) is quite straight- 
forward. In  the case of (4.19) we note that our assumed form of (Dij contains jumps 
a t  s = 2 + to and s = 2.2. On interpreting these jumps as limits of continuous functions 



Sedimentation in a polydisperse system. Part 2 52 1 

5 0  
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0014 
0016 
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0020 
0025 
0.030 
0040 
0050 
0060 
0080 
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0150 
0200 

a = 0 1  ym a = 0 5 y m  a = l y m  a = 2 y m  
- 

Sip 
- 

- 

- 

- 
- 309 
- 2.63 
-2.41 
-2.14 
- 2.03 
- 1.92 
- 1.87 
- 1.83 
- 1.79 
- 1.75 
- 1.69 
- 1.63 

- 245 
- -2.14 
2.49 - 203  

- 004 - 1.97 
- 1.27 - 1.93 
-2.81 - 1.88 
- 3.44 - 1.85 
- 405 - 1.82 
- 4.38 - 1.80 
- 460 - 1.78 
- 492 - 1.75 
-516 - 1.73 
- 5 6 5  - 1.68 
- 608 - 1.63 

- 

- - 
- - 2.22 

- 1.36 -2.01 
- 2.94 - 1.93 
- 3.57 - 1.90 
-3.91 - 1.88 
-411 - 1.86 
- 439 - 1.84 
- 455  - 1.82 
- 4.74 - 1.80 
- 4.87 - 1.79 
- 4.98 - 1.77 
-5.17 - 1.75 
- 533 - 1.73 
-571 - 1.68 
- 608 - 1.63 

Sl/@ S p  

- 2.08 
- 2.62 - 1.93 
-373 - 1.88 
-412 - 1.86 
-431 - 1.85 
- 4.43 - 1.84 
-451 - 1.83 
- 4 6 5  - 1.82 
-4.73 - 1.81 
- 486 - 1.79 
- 4.96 - 1-78 
- 505  - 1.77 
- 5.2 1 - 1.74 
- 536  - 1.72 
-572 - 1.68 
- 608 - 1.63 

- 

s ; / G )  

- 339 
-419 
- 442 
- 453  
- 460 
-465 
-469 
-477 
- 4.83 
- 492 
-501 
- 508  
- 5 2 3  
- 537 
-573 
- 6.08 

TABLE 5. Values of the direct contributions to Si, and Sl, (where S, = Sb, + y S i )  due to gravity as 
a function of go, for two species of spheres of equal radius a a t  small PBclet number 
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0008 
0010 
0012 
0014 
0016 
0018 
0020 
0025 
0030 
0040 
0050 
0060 
0.080 
0100 
0120 
0150 
0200 

a = 0 1  ym a = 0 5 p m  a = l y m  a = 2 y m  

Sip 
- 

- 

- 
- 
2.03 
1.14 
092  
039  
026  
010  
0 0 3  

- 0.02 
- 008 
-012 
-015 
-018 
-023 

S p  
- 
__ 
- 
- 

1.52 
1 -03 
081  
053  
042  
032  
028  
0 2 5  
0 2  1 
018  
017  
0 1 5  
012  

Sip 
- 

- 

098 
047 
029  
018  
014  
006  
002  

- 003  
- 006  
- 008  
-011 
-014 
-016 
-019 
-023 

- - 
068 

0.91 026  
058  0 1 5  
045  009  
0-39 006  
0 3 5  004 
0.3 1 0002 
027 - 002 
0.24 - 005  
022 - 007 
021  - 0.09 
019  -012 
017 -014 
0.16 -016 
014  -019 
012  -023 

- 

Sip SiY) 
- 051 

068 0.15 
044 007  
036  004 
033  002  
030 0005 
029  - 0004 
026  - 002 
0 2 5  - 004 
023  - 006  
022 - 008  
020 - 009  
018 -012 
017 -014 
016  -016 
014 -019 
012  - 0 2 3  

Sip 

054 
037 
031  
029  
028  
027 
026  
0 2 5  
024 
022 
021 
020 
018  
017 
016  
014 
012 

TABLE 6. Values of the direct contributions to S; (where Stj = S&+yS;,) made by the interparticle 
force (SijI)) and by Brownian diffusion (SiIB)) as a function of to, for two species of spheres of equal 
radius a at small PBcIet number. The corresponding contributions to SG are equal in magnitude 
and opposite in sign to those made to Si,. 
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FIGURE 14. The direct contribution to  S& made by the interparticle force as a function of 6, for 
two species of spheres of equal radius a at small PBclet number. 

we find 

d exp ( - (Dtj/kT) 
ds 

&'(s) s2 ds ,  (4.22) 

and this integral can be integrated numerically. 
The calculated values of S;jG) and SijG) for various values of go and four sphere 

sizes are shown in table 5 and of S;j') and S;jB) in table 6. The contribution to Sij 
of particular interest here is that  made by the interparticle force. Figure 14 shows 
S;J1) as a function of Eo for the four sphere sizes. Increasing go from its minimum value 
zero to its maximum value 0.2 changes the division between the range from which 
particles are excluded by repulsive forces and the range of attractive forces, and as 
would be expected S;;') changes sign at some value of go between zero and 0.2. To 
account for the fact that  S:3(') > 0 (implying that the interparticle force between a 
sphere of species i and a sphere of the same size but smaller density causes an increase 
in the speed of fall of i spheres) at smaller values of to, one must recall that &(s)  < 0 
and that t8he j spheres are less numerous just above an i sphere than just below i t  
when y < 1, thereby causing a net downward contribution to  the velocity of the i 
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-6 - 

0 0.05 0.10 0.1 5 0.20 
€ 0  

FIGURE 15. The direct contributions to  made by gravity and Brownian diffusion, and tha t  made 
to  Sij by gravity, for two species of spheres of equal radius a at small PBclet number. The three 
dotted straight lines show the values in the absence of interparticle forces. 

sphere due to attraction b y j  spheres. On the other hand, a t  larger values of to the 
Coulomb repulsion dominates and the speed of fall of the i spheres is decreased. The 
general magnitude of &';$I) is comparable with that of in this case of equal sphere 
sizes, and both are significantly smaller than 

Figure 15 shows the other two contributions to S&, for the smallest and largest of 
the four sphere sizes. Also shown in figure 15 is the direct contribution to Slj due to 
gravity. In  view of (4.21) there is no need to show the contributions to  8; due to 
interparticle force and Brownian diffusion. From a comparison of the curves in figure 
15 with the straight lines showing the values of SijG), SJB) and SG(G) for the case 

= 0, we see the importance of the indirect effect (that is, the consequence of the 
change in the pair-distribution function) of the interparticle force. 

Finally, the three contributions are added together to show the resultant values 
of Xij and Slj in figure 16. 

I and 1 S;jG) I .  

5. Discussion of results 
Our numerical results are likely to be applied most often to a system of two 

species of particles, characterized by the suffixes i and 4 say. The mean velocities 
of the two different species are given by the general formulae 
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FIGURE 16. The sedimentation coefficients Sij and Sij (defined by the relation S, = Sij+ySG) for 
two species of spheres of equal radius a a t  small PBelet number, as functions of the parameter 6, 
specifying the location of the high Coulomb barrier. The dotted straight lines show the values in 
the absence of interparticle forces. 

Eo 

where Sii depends on A( = aj/ai )  and y( = (p i -p ) / (p i -p ) ) ,  and 

Sj , (hJ)  = 8&1,y-1). (5 .2 )  

I n  (5.1) Sii and Sjj refer to interactions between identical particles. I n  the absence 
of interparticle forces Sii = Sjj = - 6.55 ; and when interparticle forces are taken into 
account Sii and Sij may take different values, as illustrated by the calculated curves 
in figure 13 for a simplified form of interparticle force potential. 

I n  some applications it will be of interest to know whether the two types of particle 
are sufficiently close in their properties for the formula for the sedimentation velocity 
in a monodisperse system to be applicable. This is not a simple question, in view of 
the singular character of the limit represented by identical particles. First the value 
of the PBclet number (defined by (1.2)) for the relative motion of the two spheres due 
to gravity should be calculated. If gtj 4 1 ,  the singular behaviour is mostly 
suppressed, and the calculated values of Sii and Syi in table 3 (for the case mi+ = 0) 
allow the two sedimentation coefficients S ,  and Sji to  be estimated. If they are close 
to each other and to  - 6.55, then the dispersion is effectively monodisperse. If on the 
other hand Pii % 1 ,  Sij and Sit will definitely differ from - 6 5 5 ,  by an amount which 
depends on whether y or h is closer to  unity. If I ( y - - l ) / (h - - l )~  -+ 1 ,  the values of 
Sii in table 2 are applicable and, provided 1 h - 1 1 4 1 ,  Sii z - 5.6. However, if ] h - 1 1 
is much smaller than I y-  1 1, the relation 

Sij = -2.52-0.13~ 

is applicable (see table I). If both particles have approximately a radius of 2 pm and 
approximately a reduced density of 1 gm/cm3, a size difference of four percent or a 
reduced density difference of eight percent would be sufficient to make the PBclet 
number of the relative motion equal to 10. 
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The magnitude of Sij has been found to vary widely with y and A,  especially for 
values of h above about 2, and it may also be much greater than unity. Suppose, 
for example, that  two species characterized by h = +and y = 1 are interacting at  large 
PBclet number and that interparticle forces are negligible. Table 1 shows that 
Sij = - 3.83 and Sji = - 24.32, whence 

(U,) = Uio)(l-6.55q5,-3.83$j) 

(Uj) = U,(0)(1-24*32$~-6*55$j) 

The large magnitude of S,, here leads to the curious result that the sense of (Uj) is 
reversed by the up-current caused by the falling larger i spheres if $i exceeds about 
0.04. It might be thought on mathematical grounds that, since our expressions for 
(Ui) and (Uj) are perturbation expansions valid only when q5i+$j  < 1 ,  a reversal 
of sign of (Uj) could not occur within the range of values of $s and $, for which 
the expressions are valid. However, there is not necessarily a conflict. The magnitudes 
of our perturbation velocities S,, Ulo) and S,, $, Uf" certainly must be small 
compared with the larger of the two imposed velocities Uio) and U,(O), but they may 
be comparable with one of them if this one is much smaller than the other. 

The calculations for the case of small PBclet numbers showed that the direct 
contribution to S,, due to Brownian diffusion (denoted by SIB)) is generally rather 
small compared with the direct contribution due to gravity (#a?)). At large PBclet 
numbers AS$$) = 0, and it is likely that IXl$)I is considerably smaller than lSjj.)I a t  
all values of the PBclet number. (A pity - recognizing that such a contribution exists 
and calculating its value made a nice theoretical problem.) However this does not 
mean that the effects of Brownian diffusion may be ignored in an approximate 
treatment ; the indirect effect of Brownian diffusion exerted through its influence on 
the structure of the dispersion, that  is, on the pair-distribution function in our case 
of a dilute dispersion, is significant a t  all except large PBclet numbers. The influence 
of Brownian diffusion on the pair-distribution function is strong in particular in the 
neighbourhood of the touching position (s = 2) where psi is singular in the absence 
of Brownian diffusion. 

Our calculations of the effect of an interparticle force were based on a simplified 
form of the potential function representing strong Coulomb repulsion of spheres with 
a spacing less than to and van der Wads  attraction at larger spacings. A more realistic 
form of the potential which allowed for a continuous variation of the Coulomb 
contribution and a smoothly rounded secondary minimum would yield values of S,, 
differing in numerical detail, but is unlikely to  affect the conclusions concerning the 
magnitude of the direct contribution AS$;). We found that S$') and SJB) are of 
comparable magnitude when PSj < 1 and h = 1 (in which case Sijz) = -ij':jz) and 
S;jB) = -SijB)), and there is no obvious reason why the relationship should be very 
different a t  other values of Pij or of A. The direct contributions to the sedimentation 
coefficient due to the interparticle force and relative diffusion both are non-zero only 
if the pair-distribution function is not completely isotropic, and so both vanish as 
Pgj + 00. The remarks in the previous paragraph about the magnitude of Xi$) thus 
probably apply also to 8i;). The indirect effect of the interparticle force exerted 
through its influence on the pair-distribution function is undoubtedly important, 
however. We saw this clearly in the calculations of the effect of our simplified 
interparticle force on the sedimentation coefficient for a monodisperse system (figure 
13), and similarly in the calculations of SiF) for equal sized spheres a t  small PBclet 
number (figure 15). It is probable that the effect of the interparticle force would be 
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FIGURE 17 .  S,, + (A2 + 3h + 1 )  as a function of h for spheres of equal density ( y  = l ) ,  a t  small and 
large PBclet numbers. Both curves should asymptote to the values -2.5 (as h -+ 0) and zero (as 
h .--* co), but calculations for larger values of h are needed to confirm this in the case Yt7 % 1. For 
values of' A very near h = 1 ,  Pi, is necessarily small. The vertical line a t  h = 1 shows the range of 
variation of S,, + (A2 + 3h + 1) found for identical spheres of radius 1 pm as the interparticle force 
parameter &,, varies from 0.01 to 020. 

even more marked a t  large PBclet number where there would be a clash of strong 
processes a t  work in the neighbourhood of the touching position of the two spheres. 
The lack of any calculations of the sedimentation coefficient for two species of spheres 
exerting forces on each other a t  large PBclet number is a weakness of the existing 
body of information concerning polydisperse systems. 

The asymptotic forms for Sij a t  small and at large values of h for a given (and 
arbitrary) value of the PBclet number put forward in Part 1 are important, because 
they help to set limits to the variation of Sij with A,  y and Yij which may occur. As 
A -+ 0 we have 

(5.3) 

and the approach to this asymptotic form was found to be quite rapid, being nearly 
complete a t  h = Q at both small and large PBclet numbers. The theoretical result for 

(5.4) 
the limit h +co is 

The approach to this much more precise asymptotic form is slower, especially a t  large 
PBclet number, and our numerical calculations have not been taken to sufficiently 
large values of h to  confirm the terms of order h and of order ho in (5.4). However 
there is some numerical evidence to suggest that  the difference between Xii and the 
asymptotic form (5.4) diminishes when h is above about 16. This difference is in any 
event a small fraction of I Sij I for values of h above 2 a t  both small and large values 
of the PBclet number. 

These asymptotic forms impose such strong constraints on the values of Sij a t  small 

Sgj N - 2.5 - 7, 

Sij N -y(h2 + 3h + 1) .  
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PBclet number, where we have the additional exact information that Sij is a linear 
function of y, that the simple empirical relation 

- 2.5 
8.. = ~- y(h2 + 3h + 1) 

a’ 1 +0-6h (5.5) 

is accurate to the first decimal place over almost the whole of the (y,h)-rJane when 
Pij 4 1 .  At large PBclet numbers the dependence of Sij on y and h appears to be too 
complicated to allow approximate representation by simple algebraic expressions, in 
part owing to the strange differences of shape and position of the curves representing 
Sij as functions of y or h on the two sides of the excluded ranges of these variables. 
There is also the difficulty of the many-valuedness of S,  which occurs at the central 
point y = 1, h = 1. The case of spheres of equal density (y = 1)  is perhaps of greatest 
practical interest, and the results for this case a t  both small and large values of the 
PBclet number are shown in figure 17 in the form of S, + (A2 + 3h + 1) as a function 
of A. The curve for Pij % 1 lies above that for gij 4 1 because close sphere pairs, which 
have a larger speed of fall, are more numerous a t  large PBclet number. The difference 
between the values of S, on the two curves is rather small, except a t  values of h above 
unity where the difference is a small fraction of ISii[ in any event. I n  the absence 
of evidence to the contrary, it would be reasonable to expect that Sij varies 
monotonically with Pii for given h when cDij = 0. 

For comparison with this range of variation of Sij with PBclet number we also show 
on figure 17 the range of variation resulting from change of the position of the 
Coulomb potential barrier from to = 0.02 to to = 0.20 in the case of identical spheres 
of radius 1 pm which exert a force on each other. 

We end by offering some conclusions relevant to further work on the problem: 
(i) a rough approximation to Sii in all circumstances may be obtained by retaining 

only the direct contribution due to gravity and ignoring those due to interparticle 
forces and relative diffusion ; 

(ii) the pair-distribution function that is substituted in the expression for Sgj”) 
should in general be calculated with allowance for the effects of interparticle forces 
and relative diffusion ; 

(iii) the calculations of pii presented here are adequate for cases of negligible 
interparticle force effects but should be extended to other and more realistic forms 
of the interparticle force potential, to the case h $: 1 with aij $: 0, and, if possible, 
to the case of large PBclet number with cD,, $: 0;  

(iv) the simple representation of the pair-distribution function in terms of the excess 
number of sphere pairs in the nearly-touching position that was tested and found to 
give accurate results for a monodisperse system in ‘$4 provides a possible link with 
observations and could perhaps be exploited in other circumstances ; 

(v) observers of sedimentation velocities in monodisperse or polydisperse systems 
should take care to record the information needed for determination of the inter- 
particle force potential under the conditions of the experiment, the range of action of 
strong repulsive forces being of particular importance. 
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his calculations to suit our needs. One of the authors (C.-S. W.) wishes to thank the 
Chinese Academy of Sciences, The Royal Society, and Trinity College for their 
generous support of his period of work a t  Cambridge. 
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